| 
 | 姓名:魏金龙 | 性别:男 | 
| 籍贯:安徽阜阳 | 民族:汉族 | |
| 所在系:数理与金融统计 | 教研室:数理统计 | |
| 是否博导:否 | 是否硕导:是 | |
| 职称:副教授 | 现任职务:教研室副主任 | |
| 电子邮箱:weijinlong@zuel.edu.cn | ||
讲授课程:随机过程,时间序列分析,计量经济学
研究方向:微分方程的随机正则化,时间序列
个人简历(教育背景、工作经历等):
- 2021年1月--至今娱乐网站白菜网站大全 600cc全讯白菜网 副教授 
- 2014年7月--2020年12月 娱乐网站白菜网站大全 600cc全讯白菜网 讲师 
- 2017年9月--2018年2月 格拉斯哥大学 数学与统计学院 访问 
- 2009年9月--2014年6月 华中科技大学 数学与统计学院 硕士-博士 
- 2005年9月--2009年6月 阜阳师范大学 数学与统计学院 学士 
科学研究:
近5年论文(英文):
- Small mass limit in mean field theory for stochastic N particle system. J. Math. Phys. 63(8)(2022) 1-10. 
- The central configuration of the planar (N+1)-body problem with aregular Npolygon for homogeneous force laws. Astrophys. Space Sci. 367(7)(2022) 1-9. 
- Equilibrium points in restricted problems on S2 and H2. J. Math.Phys. 63(6)(2022) 1-38. 
- Stochastic transport equation with bounded and Dini continuous drift. J. DifferentialEquations 323 (2022) 359–403. 
- Noise and stability in reaction-diffusion equations. Math. Control Relat. Fields 12(1) (2022) 147-168. 
- Notes on spatial twisted central configurations for 2N-body problem. Astrophys. Space Sci. 367(1)1-10. 
- Strong solutions of stochastic differential equations with square integrable drift. Bull. Sci. Math. 174 (2022) 1-31. 
- Periodic solution of stochastic process in the distributional sense. J. Evol. Equ. 21(4) (2021)4005–4037. 
- A Kolmogorov-type theorem for stochastic fields. Stoch. Anal.Appl. 39 (2021)1009-1024. 
- Blowup of parabolic equations with additive noise. Appl. Math. Lett. 121(2021)1-5. 
- Analysis of a two-dimensional triply haptotactic model with a fusogeniconcolytic virus and syncytia. Z. Angew. Math. Phys. 72(4)(2021) 1-23. 
- Kinetic solutions for nonlocal stochastic conservation laws. Fract. Calc. Appl. Anal. 24(2)(2021) 559–584. 
- Stochastic regularization for transport equations. Stoch. Partial Differ. Equ. Anal. Comput. 9(1)(2021) 105–141. 
- On a generalized population dynamics equation with environmental noise. Statist. Probab. Lett. 168 (2021) 1-7. 
- Averaging principle for stochastic differential equations under a weak condition. Chaos 30(12) (2020) 1-5. 
- Notes on nontrivial multiple periodic solutions for second-order discrete Hamiltonian system. Bull. Malays. Math. Sci.Soc. 43(2020) 4393-4409. 
- The second-order parabolic PDEs with singular coefficients and applications. Stoch. Anal. Appl. 38(6) (2020) 1102–1121. 
- The effect of noise intensity on parabolic equations. Discrete Contin. Dyn. Syst. Ser. B 25(5) (2020) 1715–1728. 
- Blowup solutions for stochastic parabolic equations. Statist. Probab. Lett. 166(2020) 1-6. 
- The dependence on initial data of stochastic Camassa-Holm equation.Appl. Math.Lett.107 (2020) 1-7. 
- Infinitely many non-constant periodic solutions with negative fixed energy for Hamiltonian systems.Appl. Anal. 99(4) (2020)627–635. 
- Blowup solutions of Grushin's operator. Appl.Math.Lett. 97(2019)20–26. 
- Nonconstant periodic solutions with any fixed energy for singular Hamiltonian systems. Discrete Contin. Dyn. Syst. Ser.B 24(4)(2019)1617–1625. 
- Schauder estimates for stochastic transport-diffusion equations with Lévyprocesses.J. Math. Anal. Appl. 474(1) (2019) 1–22. 
- BMO and Morrey-Campanato estimates for stochastic convolutions and Schauder estimates for stochastic parabolic equations. J. Differential Equations 266(5) (2019) 2666–2717. 
- Notes on gap solitons for periodic discrete nonlinear Schrödinger equations. Math. Methods Appl. Sci. 41(16) (2018) 6673–6682. 
- Kinetic solutions for nonlocal scalar conservation laws. SIAM J. Math. Anal.50(2)(2018)1521–1543. 
近5年论文(中文):
家庭异质性、互联网使用与商业保险参保--基于中国家庭金融调查数据. 南方金融 9 (2019) 51-62.
科研项目
主持并完成国家自然科学基金青年基金一项,项目编号:11501577,项目名称:一类随机守恒律系统适定性及相关问题的研究,年限:2016.1--2018.12。
教学研究:
- 指导22届本科生司马成晨: 投资者行为及情绪对股票市场收益波动性的影响分析,获校优秀学士学位论文; 
- 指导21届本科生赵鸶鸶: 生物医药行业投资价值分析,获校优秀学士学位论文; 
- 指导20届本科生肖凡宇: 猪肉价格短期波动对物价指数传导影响研究,获校优秀学士学位论文; 
- 参与完成大规模在线开放课程(MOOCs)一项:时间序列分析,2019年。 

 
	

